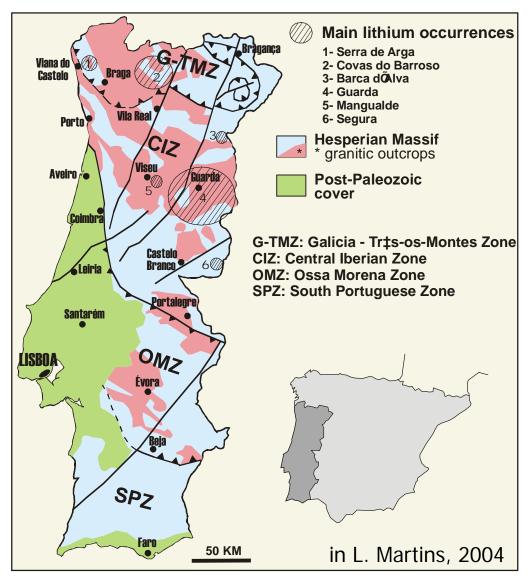


Campo Aplitopegmatítico Litinífero do Barroso-Alvão.

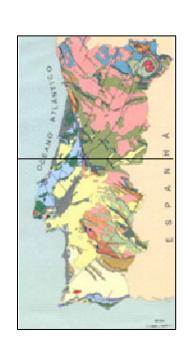
Os seus diferentes minerais de lítio e a sua melhor aplicação

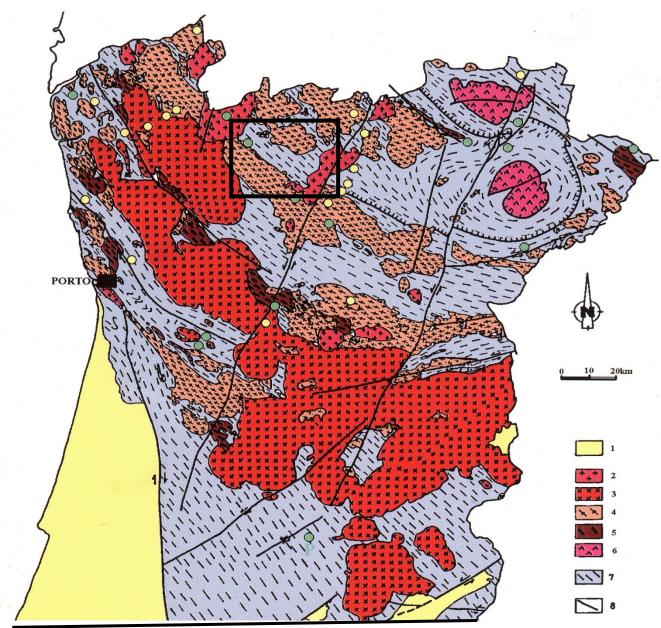

MINERAIS DE LÍTIO

- O Lítio dada a sua extrema reactividade não ocorre como metal livre na natureza. Os mais importantes minerais de lítio são:
 - ESPODUMENA (LiAlSi₂O₆)
 - **LEPIDOLITE** K₂(Li.Al)₅₋₆ (Si₆₋₇ Al₂₋₁ O₂₀) (OH,F)₄
 - PETALITE (LiAISi₄O₁₀)
 - AMBLIGONITE ((Li,Na)Al(PO₄)(F,OH))

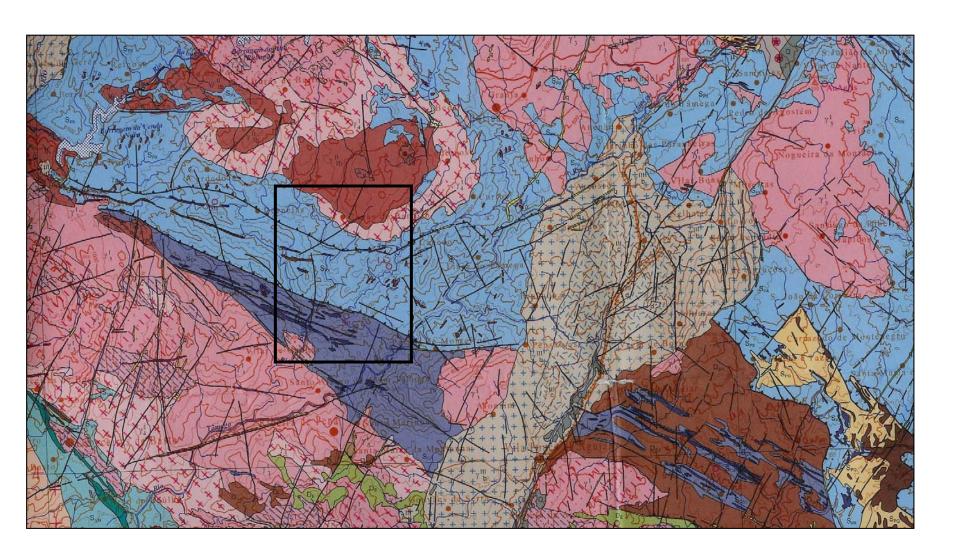
Estes **minerais** aparecem em aplitopegmatitos da classe elementos raros, mais precisamente na **família LCT** (Li, Cs, Ta).

Dentro desta família são abundantes, o tipo albite-espodumena, para além de vários subtipos complexos (espodumena, petalite, lepidolite e montebrasite-ambligonite) (Cerny 1991).


Lítio em Portugal



As rochas graníticas e consequentemente o Lítio ocorrem principalmente Norte e Centro de Portugal, nas zonas Galiza Trás os Montes (GTMZ) e Centro Ibérica (CIZ).


A região do Alto Tâmega

Serras do Barroso e do Alvão

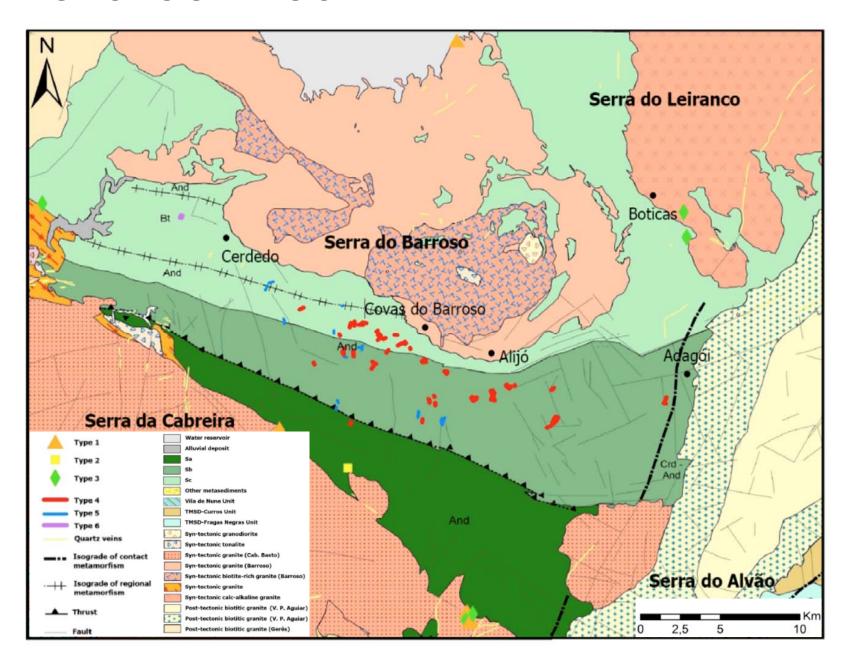
Geologia de Trás- os- Montes Ocidental

Covas do Barroso

Tipos de filões:

Foram cartografados, encaixados em metassedimentos, 2 tipos de filões:

- Aplíticos pouco espessos, em geral caulinizados, com mineralização cassiterítica de baixo teor (4kg/T).
- Aplito-pegmatíticos mais espessos (4-30 m) e duros.

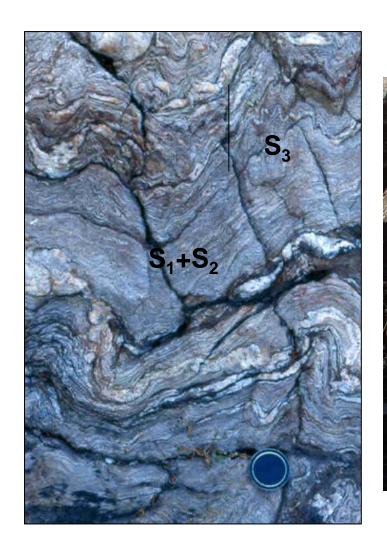

Eram às centenas os vestígios de trabalhos mineiros com maior ou menor extensão e profundidade, mas a grande maioria deles de carácter artesanal.

Os numerosos filões aplitopegmatíticos que foram explorados, são subverticais, descontínuos, deformados e têm em geral, orientação N120E a N130E, N-S, N10E a N50E, os primeiros correspondendo à atitude de S3.

Não há indicações precisas da quantidade total de minério explorado contudo deve referir-se que os filões aplitopegmatíticos possuíam, em geral, uma mineralização fina e os teores médios eram da ordem dos 4 a 5 kg/t.

No decurso do projecto de cartografia geológica à escala 1:50000 da folha 6C de Cabeceiras de Basto (Protocolo FCUP-SGP), foi posta em evidência em 1987, a ocorrência de filões aplitopegmatíticos com espodumena na «Serra do Barroso».

GEOLOGIA LOCAL

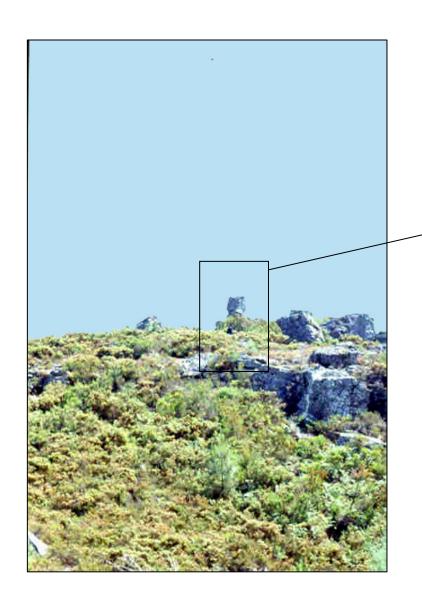


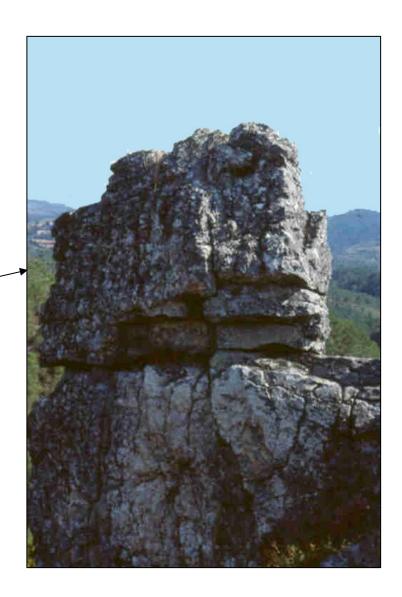
OS FILÕES LITINÍFEROS

Dois novos tipos de filões foram, entretanto, definidos:

- 1) com espodumena dominante, instalados nos planos de S2 e por isso muitas vezes sub-horizontais (que foram os primeiros a ser definidos);
- 2) com petalite dominante, subverticais, instalados em estruturas D3.

RELAÇÃO FILÕES- ENCAIXANTE



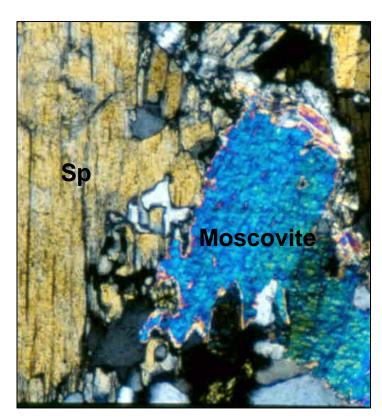


Filão pegmatítico com cisallhamento D3

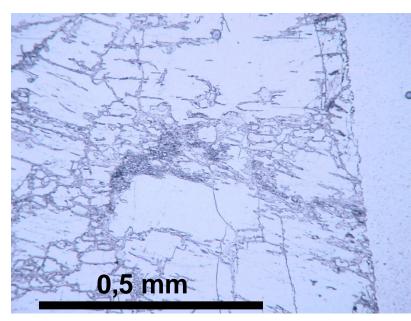
Filão sub-horizontal

Filão com espodumena

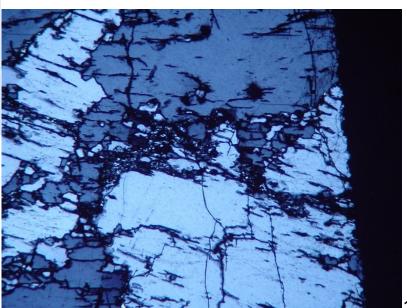
Filão com petalite



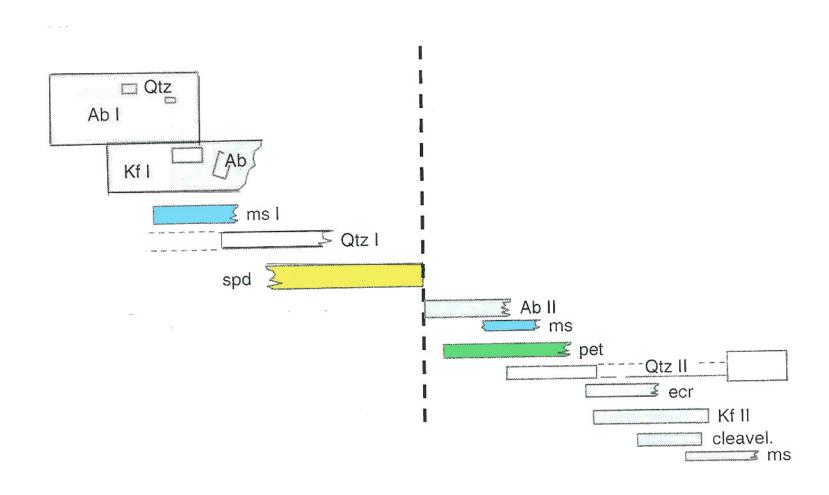
MICROSCOPIA


Filões com espodumena dominante

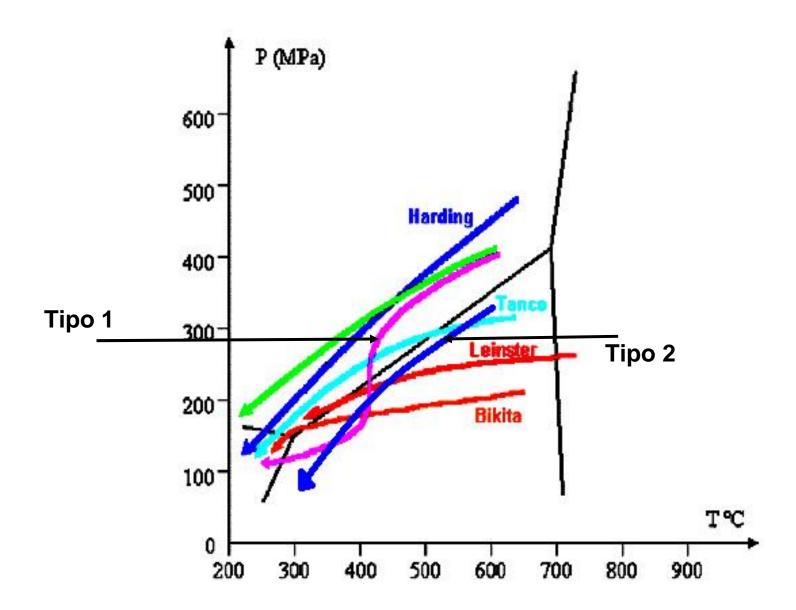
Espodumena (Sp)



Filões com petalite dominante

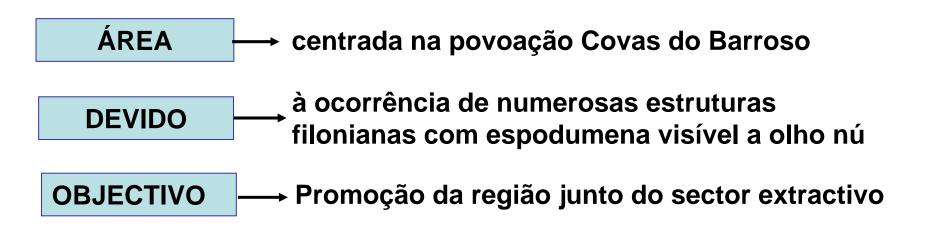

N //

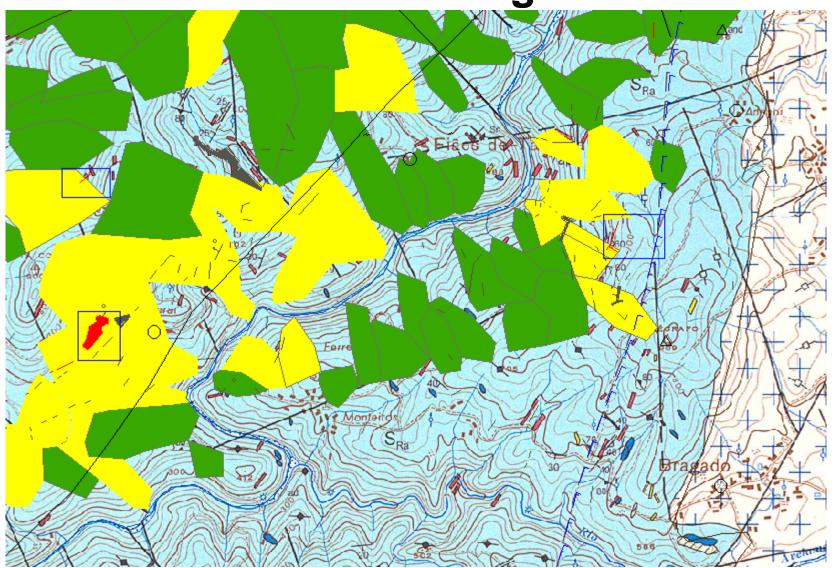
A petalite é a espécie litinifera dominante, a espodumena é rara ou ausente e a cassiterite (667 à 1200 ppm Sn) está geralmente presente.



NX

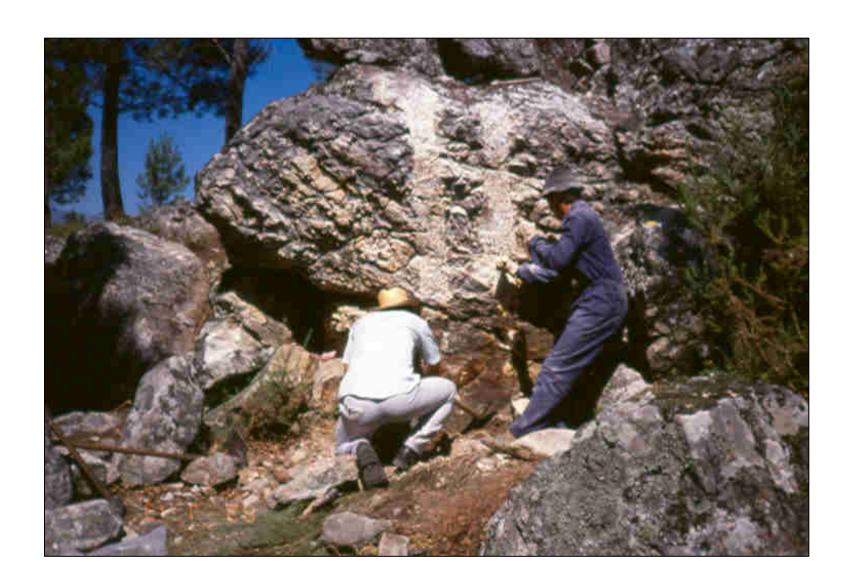
Associação mineral dos pegmatitos com espodumena dominante


PETROGÉNESE


PROSPECÇÃO

Campo aplito-pegmatítico de Covas do Barroso

No seguimento dos trabalhos da UP o IGM, em estreita colaboração com a UP, realizou campanha de prospecção em inícios dos anos 90 numa área aproximada de 250 km².


Geoquímica do Lítio em sedimentos de linha de água

Os trabalhos incluíram:

- Cartografia detalhada 1/500 de 3 grandes filões aplito-pegmatíticos mineralizados
- 10 sondagens; total de 475 m; 340 amostras para análise
- 3 trincheiras de pesquisa; total de 176 m; 65 amostras
- Avaliação de recursos
- Estudo de processos de beneficiação de minério (Laboratório do IGM – Porto)

Amostragem em canal

Trincheiras e sondagens com recuperação

	Tipo complexo		Filões c	Filões com espodumena		Filões com petalite		
	Harding	Tanco	Alijó	Veral	Adagói	AL91	AL101	AL103
SiO ₂	75,24	69,74	73,47	74,07	72,64	71,05	72,69	73,18
Al_2O_3	14,42	16,5	16,78	16,04	17,03	17,74	16,9	16,67
Fe(total)	0,65	0,18	0,77	0,71	0,68	0,18	0,2	0,22
MnO	0,18	0,21	0,12	0,11	0,07	<0,02	0,04	0,03
MgO	0,01		0,1	0,07	0,15	0,02	0,07	0,13
CaO	0,2	0,89	0,32	0,19	0,33	0,04	0,06	0,1
Na ₂ O	4,23	2,69	3,87	4,28	4,63	2,58	4,5	3,69
K ₂ O	2,74	4,42	2,67	3,15	3,1	3,58	2,88	2,3
TiO ₂	0,05	0,01	0,01	0,02	0,01	<0,04	<0,04	<0,04
P ₂ O ₅	0,13	1,18	0,36	0,34	0,33	0,71	0,93	0,24
P.feu			1,22	1,18	1,07	1,99	0,26	1,86
Total	97,85	95,82	99,68	100,1	100,02	97,89	98,53	98,42
Li	37-8	400	4857	2330	3710	8200	4900	5000
Rb	183-9	9970	533	607	547	1134	970	613
Sr			75	22	49	20	19	31
Zr			14	16	15	9	15	6
Nb	8-2	13	20	18	35	34	54	23
Ва			7	7	57	14	16	20
Та	12-4620		<15	<15	<15	<15	<15	<15
Sn	12-3	170	33	27	26	667	1166	161
Th			<5	<5	<5	<5	<5	<5

Principais resultados

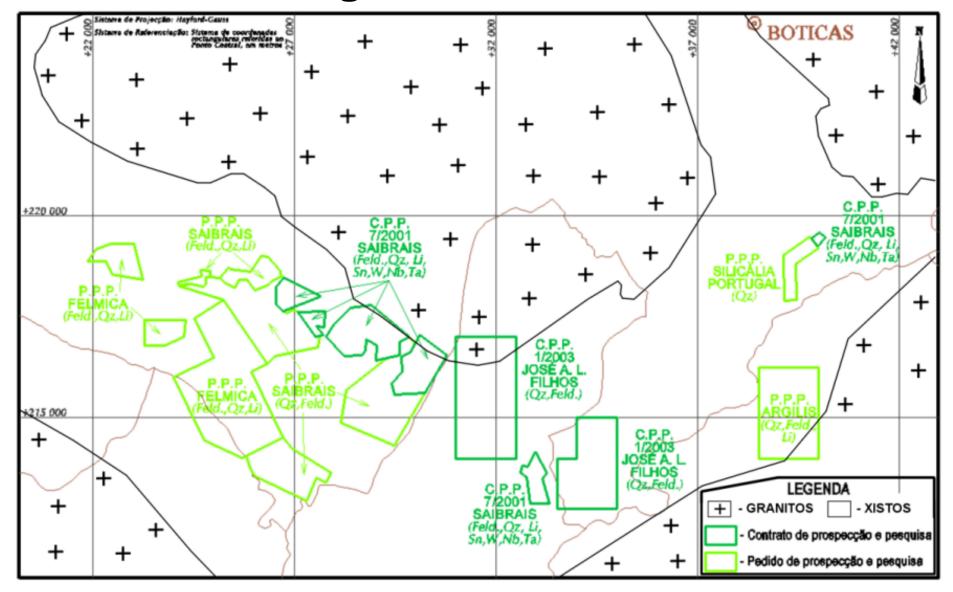
FILÃO	DIRECÇÃO	INCLINAÇÃO	POSSANÇA MÁXIMA	EXTENSÃO DE AFLORAMENTO
Alijó	N15W	75W	37 m	380 m
Veral	N10E	18 to 35 W	8,5 m	280 m
Adagói	N25E	50 to 65 NW	35 m	300 m

Resultados mais promissores foram obtidos para os filões de Alijó e Adagói:

	ALI	J	J
403	000	Т	de
miné	erio (CO	m:

Li ₂ O	1,40%
Na₂O	3,45%
K ₂ O	2,21%
Fe	0,70%

ADAGÓI	
108 000 T de	
minério com:	


Li ₂ O	1,05%
Na₂O	3,98%
K ₂ O	3,20%
Fe	0,60%

28

Os trabalhos geológicos realizados na região de Covas do Barroso permitiram evidenciar a existência dum extenso campo filoniano aplitopegmatítico com mineralização de Li.

A divulgação dos resultados atraiu empresas nacionais e estrangeiras que estão actualmente a levar a cabo trabalhos mais específicos ao abrigo de contratos com o Estado Português.

Contratos de Prospecção e Pesquisa na região do Barroso

Actualmente em Portugal já existem explorações de aplitopegmatitos com Lítio para a Indústria Cerâmica e Vidreira, em filões onde a lepidolite, a espodumena e a petalite são dominantes.

Contudo a utilização das reservas de teor superior a 1% de Li₂O nos filões ricos em espodumena, deverá ser desde já encarada como sendo para minérios de Lítio convertível em Carbonato de Lítio.

CONCLUSÕES

A região do Alto Tâmega é uma região com recursos geológicos de grande interesse económico.

Portugal apresenta, ainda, um enquadramento legal favorável às actividades mineiras.

O LNEG e DGGE que herdaram as competências do extinto IGM, têm e deverão continuar a ter um importante papel a desempenhar na promoção dos recursos geológicos portugueses.

-As acções realizadas na região de Covas do Barroso são disso paradigma bem como de uma frutífera parceria com a Universidade.

32

Fernando Noronha, Alexandre Lima, Tânia Costa, Romeu Vieira

Bernard Charoy

João Farinha, C..Pires, L. Martins

M. Amarante, M. Machado Leite

OBRIGADO PELA VOSSA ATENÇÃO fmnoronh@fc.up.pt